Bulk SRF Nb cavities overview (WG1)

» Bulk niobium (Nb) for superconducting radiofrequency (SRF)
cavities
* Under optimization for the last 50 years

* Today, still main operational technology for future large SRF
accelerators

* Operational temperature 2 K
» Requirements on sustainability and cost reduction push R&D SRF Nb bulk activities to improve cavity performances:

Goals : reach higher quality factor Q, and field E,,,,, with surface treatments, in areproducible way
« HigherE,, , = energy reached with less cavities at higher gradient (Energy gain < E_.L,..) = reduced machine length
* HigherQ, = lesslossincavities(lossx 1/Q,) =» minimize cryogenic power
* Minimizing field emission (FE) =>» increase reliability
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R&D for performance improvements (WG1)

» Performances (Q,, Emax) of cavities (electrons & hadrons) improves dramatically over time thanks to R&D efforts on
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* RF and mechanical shape optimization

e Surface and thermal treatments

o Surface cleaning
o Ultra-Sonic cleaning
o High-Pressure Rinsing (HPR)
o Buffered Chemical Polishing (BCP)
o Vacuum
o Slow Pumping Slow Venting (SPSV)
o Residual Gas Analyzer (RGA)
o Surface polishing

o Electro-polishing (EP)

o Surface treatment
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o Heat treatment
o Hydrogen degassing

o low-T baking, 2-step baking, mid-T baking Specificationsfor cavities in operational conditions (at
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 Contamination reduction during assembly —— o | B 31010
o Robots in clean room to minimize contamination ILC, pulsed 1.3 GHz 9-cell 315 1101
o In-situ plasma processing to recover from contamination muon collider (base scenario), pulsed 1.3 GHz 9-cell -
E-XFEL pulsed / CW 1.3 GHz 9-cell 23.6/17 11019/ 2-10%
PIP-II (low B) from 20Hz to CW 650 MHz 5-cell 16.7 2.4-10%0
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R&D results versus large series performances (WG1)

» From R&Dto industrialization: for large series of cavities, performance reproducibility and reliability are compulsory
* Results on single and multi-cell cavities must be migrated to a series production (large number of components) = yield and

reliability
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Other goals and specifications for Bulk Nb R&D (WG1)

» Costreduction of Nb material by increasing Nb grain size (from fine grain (FG), presently used)

* R&Don Mid and Large grain Nb (MG and LG) materials still required to validate performances and
their possible use in accelerators (pressure vessel compliance)

* Costreductionforthe cells of 1.3 GHz 9-cell cavities estimated using medium grain (MG) :

= From FG to MG: cells-materials 35% cheaper, full-cavity materials 5% cheaper

Grainsize>1cm

A.Kumaretal., SRF23,

> Increasereliability by reducing field emission (FE), both for bulk Nb and thin fil : Grainsize<imm  Almeses
* Minimize contamination in clean room byrobots assisted cavity preparation and stringassembly , . . _ <50pm (200-300 pm)

* Improve diagnostics on FE for cavity vertical tests, and in cryomodules (also during operation)
* Implementtechniquestorecoverfrom cavity FE as in-situ plasma processing

FE emissionand X-ray trackingin ESS cryomodule \ PRI .o oro presentaton X TIC 20023 in NAL

» R&D studies for cavity production costreduction and environmental footprint
* 3D-printed cavities via additive manufacturing (AM) aim to reduce both cost and environmental footprints, via enhanced cod
* PlasmaElectrolytic Polishing (PEP) with a diluted water solution

B. Giaccone, oral presentation at LCWS2023




R&D landscape of bulk Nb cavities in Europe and criticalities/hints (WG1)

» Survey of R&D on bulk Nb cavities in Europe

About 10 labs: CEA, CERN, CNRS-IJCLab, DESY, ESS, HZB, INFN (LASA, LNF), STFC, U. Hamburg, U. Uppsala

Cavity Frequencies (and harmonics): 1.3 GHz (325 MHz, 650 MHz, 3.9 GHz), 802 MHz (401 MHz), 704 MHz (352 MH2z)
Most R&D on elliptical cavities: single-cellto develop the preparation procedure, to be further applied on multi-cells

- Preparation protocol for cavity production require a wide variety of techniques in labs and also industry (surface and heat treatment...)

* Heavy infrastructures required, existing in several labs:
o [1S04 clean rooms for cavity preparation and cavity string assembly (cryomodule)

o Infrastructures of vertical test (VT) for cavity qualification at 2 Kand at low power Existing infrastructures in european labs

o Diagnostics usedduring cold tests to characterize performances and field emissierying no 3(30 %)
. . . Welding 2 (20 %)
* Aspirational infrastructures: Surface treatment (BCP, EP, H... 8 (80 %)
o Eddy Current Scanning (ECS) for Nb material Quality Control Annealing treatment (heat treat... 6 {50 %)
. _ iy Tuning T (70 %)
o Ovensfor heat treatment.s (I-!lgh T, Mid-T) . Assembly n clean room 300%)
o Robots for clean rooms, in-situ plasma processing Robotisation 1(10 %)
o New/upgrade VT infrastructures Cold cavity test 9(90 %)
o Cryomodule assembly facilities Cold cryomodule test 770 %)
WVacuum 9 (90 %)
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» Howto speed up existing R&D
« SRF R&D is costly so more money (& HR) could help speed up some R&Ds considering presentlarge costuncertainty (materials, electricity
and fluids)
* To speed up R&D, introduce and/or extend collaborations with experts outside of accelerators, forexample:
o Robotisation in clean room for cavity preparation = robotics experts
o Plasma processingfor FE recovery = chemistry experts

» Criticalities and hints
*Risk of losing manufacturing capability
o Few Nb suppliers(1in China, 2in Japan/USA)
o Few cavity suppliers (2 European-XFEL qualified in Europe, 2-3in China, 1in Japan)
* For future machines, SRF technology skills mustbe maintained both in laboratories & industries
* Investmentin industrial processes for large series cavity production are needed
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