DE LA RECHERCHE À L'INDUSTRIE

CZZ

ACCELERATOR R&D ROADMAP - RF PANEL -THIN FILMS

www.cea.fr

C. Z. ANTOINE

1rst shot

Yellow report (which is green...)

The goal of the roadmap is to document the collective view of the field on the next steps for the R&D programme, and to provide the evidence base to support subsequent decisions on prioritisation, resourcing and implementation

Implementation survey (2023-2024): checking how the roadmap is implemented

Identified axis of the roadmap

EUrope

USA

1. Continue R&D niobium on copper

- Fabrication cost reduction
- Reaching same performances as bulk Nb (1,3-0,4 GHz, various shapes) on single cells, then on multi-cells

2. Intensify R&D of new superconductors on Cu

- Same performance (Q₀) as Nb @ 4,2 K instead of 2 K
- A15 compounds (Nb₃Sn, Nb₃Al, V₃Si) and MgB₂

3. Pursue multilayers (SIS structures)

- Reaching higher gradients (and Q₀ !)
- Going from sample to cavities

4. Intensify Cu cavity production and surface preparation.

- No welding, smooth surfaces, possible diffusion barriers
- Large series production

5. Develop 3D printing and/or innovative cooling techniques.

Cryocooling, inbuilt circulation

6. Infrastructures and Manpower

- Dedicated characterization set-ups
- Dedicated thin film infrastructures

Other projects with similar strategy

- Basic R&D in numerous SRF labs
- IFAST WP 9 thin films => 2025
 - Task 9.1: strategy
 - All European partners except CERN and DESY
 - CERN, DESY, and JALB invited to participate in the strategy meetings

Snow mass White Papers => next 10Y

- Last edition: 2021
- 1 white paper on thin films, (AF7 Accelerator Technology R&D)
 - Ifast participants participated to the writing
- TF SRF Workshops 2022 and 2024

TTC-Meetings-thin films: ~ 2-3/year

Most of the Topic #1 to # 6 are already under development

- Work on samples well advanced
- First prototypes are en route, hopefully successful for the end of IFAST (2025)
- Urgent need to increase # 6 (Characterization as well as testing infrastructures)

Several aspects are not financed yet

- Selection of the "ideal superconductor": must combine superconducting/ RF performance with fabrication easiness, reduced sensitivity to defects, tunability, reduced sensitivity to trapped flux... It needs further optimization.
- Tunability and sensitivity to trapped flux: ISAS for Nb₃Sn only
- Extension from 1-cells to multi cells
- Extension from 1.3 GHz to other frequencies
- No theory in Europe: we count on ODU or KEK

Need to make plans for the future (after IFAST)

- Address the remaining topics ... and get funded !

More support: more prototypes with different routes, faster conclusions

1. Nb ON Cu: WHAT'S LEFT TO BE DONE?

Cavity (substrate) fabrication

- Seamless cavities (Picoli/ INFN: Spinning, CERN electrodeposition)
- Split cavities (STFC, CERN)
- Additive fabrication with cooling capillaries (CEA)
- Improved sagging at the weld (everybody concerned, but not active ?)

Surface preparation :

- EP (CERN, INFN, CEA)
- SUBU (CERN , INFN)
- Plasma EP (INFN)
- CBP (existing facilities for Nb cavities can be adapted)
- Flash annealing (HZDR), laser treatment (RTU)
- Interlayers (CEA ?)

Deposition

- DC/pulsed magnetron sputtering ?
- HIPIMS (INFN, CERN, STFC, Usiegen, CEA) Jlab
- Other energetic deposition technique Jlab

Post treatment

- Flash annealing (HZDR), laser treatment (RTU)
- Capping layer (CEA) diffusion barrier, SEY modification....

Was identified as **Axis # 4** In fact, mandatory for axis # 1, # 2, # 3

Energetic deposition techniques or post annealing to get the proper crystalline structure

2. HIGHER T_c MATERIAL AND 3. SIS STRUCTURES

Cavity (substrate) fabrication

Same as previously

Surface preparation :

- Same as previously.
- Possibly intermediate Nb "thick film" as interlayer (cf axe #1)

Axis #4

Deposition

	CEA	CERN	INFN	STFC	U.Hamburg	U.Siegen	Cornell U	FNAL	JLab	Temple U	KEK	Peking U+ CAS	BARC
technique	ALD	HiPIMS	HiPIMS	HiPIMS DC/pulsed MS	ALD	HiPIMS	Thermal Electro- deposition	Thermal	ECR (NbN) Thermal (Nb ₃ Sn)	Hybrid CVD/PVD	ALD DCMS	Several methods	Spray coating
NbN- NbTiN	Х			Х		Х			х		Х	Х	Х
Nb₃Sn		Х	х	Х			х	Х	Х			х	
V ₃ Si				Х									
MgB ₂				Х						х		Х	
SIS	Х			Х		Х	X (NbN)	(X)	Х		Х	(X)	

Post treatment

- Flash annealing (HZDR), laser treatment (RTU)
- Capping layer (CEA) diffusion barrier, SEY modification....

```
DE LA RECHERCHE À L'INDUSTRI
```


2. HIGHER T_c MATERIAL AND 3. SIS STRUCTURES

=> Long term commitments and funding

What is necessary

Material characterization (microcopy, X-rays, analysis...)

Local infrastructures + collaboration with academic institutes

Superconducting properties

- Local infrastructures + collaboration with academic institutes (DC magnetometry, Tc, RRR)
 - Including novel techniques: 3rd harmonics, magnetic field penetration
- Specific tools under developments (RF properties, vortex penetration close to the operating conditions). New

tools are necessary to measure new properties ! They don't exist on the shelves!

RF testing

- Access to clean room, RF stands (running testing for machine projects vs R&D)
- Sample cavities, prototypes @ 6 GHz, 3 GHz, 1.3 GHz... (substrate production cycle)
- **Duplicate existing infrastructure? –** Not overlap, complement to existing, insufficient, facilities
- Who can pay for that ?

IN SUMMARY:

Thin Film SRF Milestones from the roadman and delays	2022	2023	2024	2025	2026	
	★ 1 ^{rst} p	prototypes	*	yield > 50%		_
Continue R&D niobium on copper—construction cost saving and securing supply:						_
Reach bulk niobium performances on 1.3–0.4 GHz elliptical and various cavity shapes (WOW, SWELL).			*	*		
scale up process to multicellular cavities (1.3–0.6 GHz)						
Intensify R&D of new superconductors on Cu—4.2 K operational cost saving						_
A15 (Nb3Sn, V3Si, etc.): reach same performance as Nb3Sn on Nb at 4.2 K on several cavity geometry (1.3–6 GHz).				*	*	4
MgB2: feasibility (critical temperature > 30 K) on 1.3 GHz cavity.	only work on samples					44
Study the influence of mechanical deformations and induced strain (~0.1%) of cavities on the RF performances of A15 and MgB2 alloys.				only Nb ₃Sn	1	
i. A15: reach same performances at 4.2K as bulk Nb at 2 K, scale to other frequencies (elliptical) and investigate the potential for multicell cavities.				*		
ii. MgB2: reach same performances at 4.2K as bulk Nb at 2 K.						4 4 4
Pursue multilayers—push for high gradient						
Demonstrate increased acceleration on 1.3 GHz bulk Nb and thin-film Nb/Cu 1.3 GHz elliptical cavity				* *	-	
scale up to various cavity shapes and multicell elliptical cavities		not poss	ible without	t additionnal f	funds	
Intensify Cu cavity production and surface preparation						
Seamless elliptical Cu substrates (mechanical or electro-deposited) starting at 1300 MHz down to 400 MHz					-	
Optimise air stable chemistries (EP-BCP/without liquid waste, heat treatment, passivation layers, etc.) for Cu surface preparation		*		*		
scale up processes to multicell cavities (1.3 GHz)		*		*		
Develop 3D printing and innovative cooling techniques.						
mechanical re sponse (similar to Nb at 4.2 K).		*				
Demonstrate substrate (cavities) surface roughness	*	*		*		
Demonstrate conduction cooled cavities with selected and optimised innovative heat links and a cryocooler		*		*		
i. Demonstrate bulk Nb performances with thin Nb film on 3D printed/electro-deposited cavity at 4.2 K.	r	not possible i	until task 1	has succeed =	=> after 202.	
ii. Demonstrate bulk Nb performances with new superconductors (A15, MgB2) film on 3D printed/electro-deposited cavity at 4.2 K.	n	ot possible u	intil task 2 l	has succeed =	>after 2025	
iii. Develop proper substrate multicell cavities.	not possi	ble until task	k i and ii hav	ve succeed =>	after 2025	4 4 4
Infrastructures and manpower—high-throughput testing						
Dedicated building with thin-film specific state-of-the-art infrastructures (clean rooms, chemistry, rinsing/washing, assembly).				after 2025		
etc.).		*				
Reinforced International Student and collaboration effort program.		not po	ssible with	nout addition	nal fund	
High-throughout RE testing facility to establish repeatable and reliable performance peeded in preparation of series production	Need for producin	manpower a a results	and budget	(He!) to make	them	

Expertise and good collaboration already exist in Europe

- International contacts also exist
- CERN is officially outside the main loops (!!!???) (albeit there are plenty of horizontal contacts)

There is little duplication

Even labs working on the same topic are exploring different routes and/or exploring lab to lab variability

Thin films on copper are the only route to help cost savings

- Cheaper manufacturing
- Higher operation temperature (operation costs lower by a factor 3)
- Higher gradients : lower capital costs

Need for strong funding increase

- Unless the message goes to the top (government level), few chances to improve the present situation
- "Official Roadmaps" will help.

Industry

- Not fully interested in the full technology yet: no business case visible in the near future
 - Industrial fabrication of Cu cavities already there
- May change once prototypes tested => post IFAST proposals

We mostly know how to built post-IFAST proposals in an integrated project

- Certainly at the European level, including Hamburg U. and CERN
- Already active collaboration with Jlab, KEK, …
- We could also benefit by increasing contacts with China (they have a lot of resources and students compare to us, but they tend to start everything from scratch)

We must be addressing all the point and get a substantial increase in resources We are small teams, we need some administrative support

- We need to get to several Funding sources/programs
- We need some official support if we want to achieve the translation from R&D to "prototyping".

SPARES

DESIRED: TAILORED MATERIAL FOR RF CAVITIES

At stakes : COST REDUCTION !!!

Cooling power (any application); can we go to cryocooling ? High accelerating fields => shorter machines ?

WHY SUPERCONDUCTIVITY ?

■ ∃ thousands of SC

In practice:

- ~ 10 are actually used
- They are all type II

Applications...

- All applied SC are type II: i.e. low H_{C1} and high H_{C2} => all operate in mixed state...
- EXCEPT Nb for RF application !!! (high H_{C1})

Niobium vs Copper

- Surface resistance 10⁵ less in RF
- High accelerating gradients @ high duty cycle, continuous wave (CW)
- Small field emission, no breakdown. Much lower dark current

Better than Nb? => necessarily thin films

But higher density of defects to overcome

Theory limit: max H_{RF} ~H_{SH}>>H_{C1}

- Accelerators considered as dirty hardware by fundamental materials scientists
- Materials science considered as alchemy by (most) accelerator scientists